Kernel PCA for novelty detection

نویسنده

  • Heiko Hoffmann
چکیده

Kernel principal component analysis (kernel PCA) is a non-linear extension of PCA. This study introduces and investigates the use of kernel PCA for novelty detection. Training data are mapped into an infinite-dimensional feature space. In this space, kernel PCA extracts the principal components of the data distribution. The squared distance to the corresponding principal subspace is the measure for novelty. This new method demonstrated a competitive performance on two-dimensional synthetic distributions and on two real-world data sets: handwritten digits and breast-cancer cytology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy of Intrusion Detection Model Using PCA and optimized SVM

Extended version of the paper “Intrusion Detection Model Using Fusion of PCA and Optimized SVM” previously presented at International Conference on Computing and Informatics (IC3I), held on November 27–29, 2014, in Mysore, India. Intrusion detection is very essential for providing security to different network domains and is mostly used for locating and tracing the intruders. There are many pro...

متن کامل

Multiple Kernel Sphere with Large Margin for Novelty Detection

Novelty detection methods have been frequently applied in medical diagnosis, fault detection, network security and the discovery of new species. Among them, Support Vector Data Description (SVDD) has received considerable attention for its comprehensivedescription ability which covers the target data. Additionally, the Multiple Kernel Learning (MKL) technique has been extensively applied in mac...

متن کامل

Kernel PCA for Feature Extraction and De - Noising in 34 Nonlinear Regression

39 40 41 In this paper, we propose the application of the 42 Kernel Principal Component Analysis (PCA) tech43 nique for feature selection in a high-dimensional 44 feature space, where input variables are mapped by 45 a Gaussian kernel. The extracted features are 46 employed in the regression problems of chaotic 47 Mackey–Glass time-series prediction in a noisy 48 environment and estimating huma...

متن کامل

Novelty Detection in Image Sequences with Dynamic Background

We propose a new scheme for novelty detection in image sequences capable of handling non-stationary background scenarious, such as waving trees, rain and snow. Novelty detection is the problem of classifying new observations from previous samples, as either novel or belonging to the background class. An adaptive background model, based on a linear PCA model in combination with local, spatial tr...

متن کامل

L1-norm Kernel PCA

We present the first model and algorithm for L1-norm kernel PCA. While L2-norm kernel PCA has been widely studied, there has been no work on L1-norm kernel PCA. For this non-convex and non-smooth problem, we offer geometric understandings through reformulations and present an efficient algorithm where the kernel trick is applicable. To attest the efficiency of the algorithm, we provide a conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007